ALLENES 411

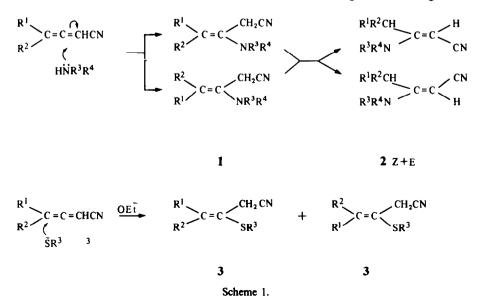
THE ADDITION OF THIOLS TO ALLENYL- AND PHENYLPROPYNYL-NITRILE AND THE FORMATION OF THIAZOLINES AND BENZOTHIAZOLES

STEPHEN R. LANDOR^{*} and PHYLLIS D. LANDOR Chemistry Department, University of the West Indies, Kingston, Jamaica

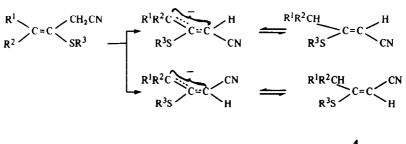
Z. TANEE FOMUM and J. TANYI MBAFOR Department of Organic Chemistry, University of Yaounde, Cameroon

and

GEORGE W. B. MPANGO University of Calabar, Nigeria


(Received in UK 12 May 1983)

Abstract—Thiols add to allenylnitriles to give unconjugated nitriles which may be isomerised to conjugated enesulphide nitriles either at high temperature (200°) or with base. Phenylpropynenitrile gives conjugated adducts directly. Heating the conjugated adducts from aminoethanethiols at > 200° results in 5-exotrig ring closure and elimination of acetonitrile to give thiazolines and benzothiazoles.


We have recently reported² that primary and secondary amines add to allenylnitriles and phenylpropynenitrile spontaneously and exothermically to give first unconjugated and then conjugated enaminenitrile adducts 1 and 2. Conversion of 1 into 2 is usually fast at moderate temperatures and goes to completion (> 99%). Under the same conditions the weakly nucleophilic thiols RSH do not react either at room temperature or even at elevated temperature or under reflux, when in the event many allenylnitriles dimerise to dimethylenecyclobutanes.3 However, in the presence of catalytic amounts of base in refluxing dichloromethane, thiols add to allenyl nitriles in 5-10 min, the sulphide anion now generated being a strong nucleophile. The products are exclusively unconjugated adducts, the 3-(alkylthio)- 3-enenitriles 3. A mixture of E and Z isomers is obtained where R^1 and R² are different substituents.

No conjugated adducts [the 3-(alkylthio)-2enenitriles] were detected at this stage. Only on heating 3 for 72 h at 200° are equilibrium mixtures of approximately 90% conjugated and 10% unconjugated enesulphide nitriles obtained. However, on heating the unconjugated adduct 3 in ethanol with base (sodium ethoxide, 0.33 molar equivalent) it rearranges fast to the E and Z forms of the conjugated adduct 4 and the equilibrium mixture (90:10) is obtained in 1 hr. Under the same basic conditions the reaction of allenyl nitriles with thiols gave 90% conjugated E and Z 3(alkylthio)-2-enentriles 4. 3-Phenylpropynenitrile gave E and Z isomers of the conjugated 3-phenyl-3-alkylthioprop-2-enentriles (4, $R^{I}R^{2}CH = Ph$) under similar conditions.

If a second nucleophile is present such as the amino-group in 2-aminoethanethiol, the conjugated adduct 5 in refluxing ethanol undergoes 5-exotrig ring

2141

Scheme 2.

closure⁴ by a second Michael addition to give the unstable thiazolidine 6 but opens again by C-S fission to give mainly the N-adduct 7.

We have no evidence that the alternative 7-exodig attack at the carbon of the nitrile ever takes place and no thiazepine 8 was isolated or detected. It is not necessary to use a base (such as ethoxide) with aminothiols as sufficient sulphide anion is present at equilibrium for addition to take place and subsequent rearrangement to the conjugated S-adduct 5. If the conjugated adducts are heated at temperatures above 200° the thiazolidines 6, which are first formed, eliminate acetonitrile and thiazolines 9 are isolated in about 70% yield. 2-Aminothiophenol similarly gives benzothiazoles 10 in about 80% yield. The anion of acetonitrile is a good leaving group and the elimination goes smoothly and in consistent yield.⁵

Both E and Z forms can undergo 5 exotrig ring closure to give the same thiazolidine although the E

 $2NH_2CH_2CH_2-SH \longrightarrow NH_2CH_2CH_2S^- + NH_3CH_2CH_2SH$ $\frac{Me}{Et} > c = c < \frac{CH_2CN}{S - CH_2CH_2NH_2}$ MeEt CH C = C = CHCNC = CHCN SCH2CH2NH2 H₂CH₂NH₂ Me 5 E + Z Et-CH NH₂ MeEtCH CH₂CN Me EtCH = CHCN NH H₂CH₂SH 8 7 E + Z 6 Scheme 3. R¹R²C R¹R²CH CH₂CN CH₃CN Е R¹R²CH R¹R²CH CH₂CN NH₂ `H -H R²

Scheme 4.

Table 1. Synthesis of 1-cyanomethylvinyl sulphides

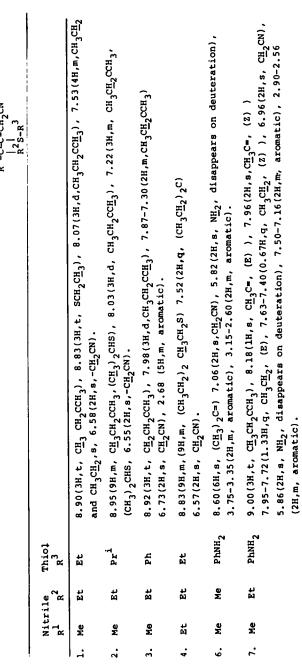
form, which offers slightly less steric hindrance to the attack of the nucleophile in the Michael position, would be expected to react faster. However, at 250° the two isomers are likely to be in equilibrium which is continuously displaced by 5-exotrig ring closure of the *E* form and thiazoline formation. Hence 70-80% of heterocycles are formed.

EXPERIMENTAL

IR spectra were determined with Perkin-Elmer 257 and 337 spectrophotometers. UV spectra were obtained for ethanolic solutions with a Pye-Unicam 1800, Perkin-Elmer 137 and Beckman 25 spectrophotometers. NMR spectra were determined with a Varian T60 and Perkin-Elmer R12A spectrophotometers for solutions in deuteriochloroform, with tetramethyl silane as internal standard. The allenic nitriles were prepared as previously described.²

3-(*Ethylthio*)-4-methylhex-3-enenitrile. 4-Methylhexa-2, 3-dienenitrile (3.2g, 0.03 mol) in dichloromethane (20 ml) was added dropwise with shaking to a mixture of ethanethiol (2.3 g, 0.03 mol) and freshly prepared sodium ethoxide (0.1 g) in dichloromethane (50 ml). The reaction mixture was refluxed for 10 min, excess sodium ethoxide filtered off and the solvent removed to give the crude product in quantitative yield. Distillation gave 3(ethylthio)-4methylhex-3-enenitrile (5.5 g, 95%), b.p. 120-121° at 4 mm Hg. Data for this compound (1) and four other enesulphide nitriles (2-5) which were prepared similarly are given in Tables 1 and 2.

3-(2-Aminophenylthio)-4-methylhex-3-enenitrile. (a) 2-Aminothiophenol (6.25 g, 0.05 mol) was added slowly to 4-methly-hexa-2, 3-dienenitrile (5.35 g, 0.05 mol) at room temperature. No exothermic reaction was observed. The reaction was monitored by IR spectroscopy and found to be complete after 36 h as shown by the disappearance of the allenic band (1950 cm⁻¹) and the S-H band (2530 cm⁻¹). Purification by column chromotography gave 3-(2aminophenylthio)-4-methyl-hex-3-enenitrile (11.1 g, 96%). Data for this compound 7 and one other compound which was prepared similarly 6 are given in Tables 1 and 2. (b) 2-Aminothiophenol (3.13 g, 0.025 mol), sodium ethoxide (0.1 g) and 4-methylhexa-2, 3-dienenitrile (2.68 g, 0.025 mol) in dichloromethane (50 ml) were refluxed for 15 min. Working up gave 3-(2-aminophenyl-thio-4-methylhex-3-enenitrile (5.4 g, 93%).


3-Propylthio)-4-methylhex-2-enenitrile. (a) 3-(propylthio)-4-methylhex-3-enenitrile (1.81 g, 0.01 mol) was heated at 200°, the reaction being monitored by NMR. After 72 h, the product was isolated and shown to be 90% 3-(propylthio)-4-methylhex-2-enenitrile. Attempts to separate the two isomers by column chromatography were unsuccessful.

(b) 3-(Propylthio)-4-methylhex-3-enenitrile (3.62 g, 0.02 mol) and sodium ethoxide (0.5 g) were dissolved in ethanol (100 ml) and refluxed for 1 hr, the ethanol was distilled off, the residue dissolved in ether and washed with water and evaporated to give 3-(propylthio)-4-methylhex-2-enenitrile in quantitative yield (see compound 1, tables 3 and 4). The crude material contains 5-10% of 3-(propylthio)-4-methylhex-3-enenitrile.

(c) 4-Methylhexa-2,3-dienenitrile (5.35 g, 0.05 mol), propyl-thiol (3.8 g, 0.05 mol) and sodium ethoxide (0.5 g)were dissolved in ethanol (100 ml) and refluxed for 1 h. Working up and fractional distillation gave 3-(propylthio)-4-methylhex-2-enenitrile (8.5 g, 93%). Data for this compound 1 and eight other 2-enenitriles are summarised in Tables 3 and 4.

3-(2-Aminophenylthio)-4-methylhex-2-enenitrile. Freshly redistilled 4-methylhexa-2, 3-dienenitrile (3.21 g, 0.03 mol), 2-aminothiophenol (3.75 g, 0.03 mol) and sodium ethoxide

<u></u>	_	NITRILE THIOL D.P. MMH9	Yield		u.v.			I.R.			0 4	FOUND		REQUIRED	H H D	
³			(8)	(8) ^λ max ε (nm)	£	Åmax (nm)	3	C≡N		C=C	υ	H	z	υ	Н	z
Εt		120-121/4.0 95	95	206	8,900		253 3,500 2 240 1615 63.8 8.8 8.1 64. 0 8.9 8.3	2	40	1615	63.8	8.8	8.1	64.0	8.9	8
$\mathbf{Pr}^{\mathbf{i}}$	· H	100-102/2.0 90	06	208	6,400	251	3,000 2 240	2 2		1620	65.5	9.2	7.6	65.5 9.2 7.6 65.6 9.5 7.7	9.5	
Чd		123-124/0.5 91	16	206	9,900	246	5,800 2 250	2		1630	71.1	7.1	6.4	71.1 7.1 6.4 71.9 6.9 6.5	6.9	9.9
- 55	Et	102-104/1.0 92	92	208	7,100	255	3,100 2 240	5		1615	64.4	9.3	64.4 9.3 7.5	65.6	9.5 7.7	7.7
<u></u>	Bun	108-109/1.0 94	94	208	8,300	255	3,600 2 240	5		1620	68.5	10.2	6.8	68.5 10.2 6.8 68.2 10.0 6.6	10.0	6.6
~	PhNH ₂		95 ¹	206	25,800	240 ² 1	11,900 2 240	2		1580 ³	66.3	6.3	12.6	66.3 6.3 12.6 66.1 6.4 12.8	6.4	12.8
	PhNH ₂		941	206	26,300	240 ²	240 ² 10,500 2 240	2 2	40	1580 ³ 67.1 6.8 12.3 67.2 6.9 12.1	67.1	6.8	12.3	67.2	6.9	12.1

sulphides
2-cyanovinyl
of
Synthesis
ų.
Table

Le THIOL b.p. relation hax(mm) ¹ e hax(mm) ¹ f are cented and content of the c													ч Ч Ч	R ¹ -CH-C=CHCN b2 cp3	z		
Et Pr^{Π} $260-262$ 93 210 6 000 285 Et $C_3H_5^2$ 99^3 208 6 500 285 Et Pr^{Π} $271-272$ 94 210 6 800 285 Et Bu^{Π} $280-181$ 93 209 6 700 286 H Pr^{1} $264-265$ 87 208 6 800 272 Pr $244-246$ 90 208 18 800 264 Pr $244-246$ 90 207 18 700 260 Pr $244-246$ 90 207 18 700 266 Pr $244-246$ 90 207 18 700 260 Pr $244-246$ 90 207 18 700 260 Pr $244-246$ 90 207 18 700 260 Bu $246-248$ 91 207 28 0	NITRILE R ¹ R ²	THIOL R ³			^λ max (nm		ł	, max (nm)		CEN			N N O N	م ×	ы c	н Л Н	N N
Et $C_3H_5^2$ 99 ³ 208 6 500 285 Et Pr^1 271-272 94 210 6 800 285 Et Bu^n 280-181 93 209 6 700 286 H Pr^1 264-265 87 208 6 800 272 Fr 244-246 90 207 18 800 264 Fr 244-248 91 207 18 700 260 Fr 243-245 90 207 18 700 260 Print 276-277 90 207 18 700 260 Print 276-277 90 207 18 700 260 Print 276-277 90 207 18 200 260 Me PhNH2 011 ⁵ 90 260 260 260 Et PhNH2 96 ⁸ 93 206 27 29 200 260 Et PhNH2 98 ⁸ 92<	í í		260-262		210	۷	000	285	18 000			575			64.0	R.9	8.3
Et Γ^{II} $271-272$ 94 210 6 800 285 Et Bu^{II} $280-181$ 93 209 6 700 286 H Pr^{I} $264-265$ 87 208 6 800 272 Pr^{II} $244-246$ 90 208 18 800 264 Pr^{II} $244-246$ 90 208 18 800 264 Pr $244-246$ 90 207 18 700 264 Pr $244-246$ 91 207 18 700 264 Pr $244-248$ 91 207 18 700 260 Pr $246-248$ 91 207 18 700 260 Bu ^{III} $276-277$ 90 207 18 700 260 Me PhMH_2 86^8 93 206 23 900 240 Et PhMH_2 86^8 93 207				663	208	9	500	285				5754	66.4 8.C	0 7.5	66.3	8.3	7.7
Et Bu ⁿ 280-181 93 209 6 700 286 H Pr^1 264-265 87 208 6 800 272 Pr I_1 244-246 90 207 18 700 264 Et 243-245 90 207 18 700 260 Pr I_2 246-248 91 207 18 700 260 Pr I_2 246-247 90 207 18 700 260 Bu ⁿ 276-277 90 207 18 700 260 260 Me PhNH2 011 ⁵ 90 207 23 900 249 Me PhNH2 91 ⁶ 92 207 23 900 260 Et PhNH2 98 ⁸ 92 207 25 100 250 Et PhNH2 98 ⁸ 92 207 25 100 250 Et PhNH2 98 ⁸ 92 207 25 100	10 Et Et		271-272		210	9	800	285					67.3 9.5	5 7.1	67.0	9.7	7.1
H Pr^1 $264-265$ 87 208 6 800 272 Pr^1 $244-246$ 90 208 18 800 264 Et $244-246$ 90 207 18 700 260 Pr^1 $246-248$ 91 207 18 700 260 Pr^1 $276-277$ 90 207 18 200 260 Bu^1 $276-277$ 90 207 18 200 260 Buh_1 $216-277$ 90 207 18 200 260 Me $PhMH_2$ 86^8 93 206 239 240 Me $PhMH_2$ 86^8 93 206 250 250 Et $PhMH_2$ 96^8 92 207 24 800 250 Et $PhMH_2$ 96^8 92 207 25 100	ll Et Et		280-181	63	209	9	700	286					68.4 9.9	9 6.7	68.2	10.0	6.6
	12 Bu H	Pr ⁱ	264-265		208	9	800	272	20 100		-	585	65.8 8.8	3 7.6	65.6	9.3	7.7
Et $243-245$ 90 207 18 700 260 Px^{T} $246-248$ 91 207 18 200 260 Bu^{T} $276-277$ 90 207 18 200 260 $PhNH_2$ 011^5 90 207 18 500 249 Me $PhNH_2$ 86^8 93 206 23 900 249 Et $PhNH_2$ 96^8 94 207 24 800 250 Et $PhNH_2$ 96^8 92 207 25 100 250 Annolic 98^8 92 207 25 100 250 250 Annolic 801 51 207 25 100 250 250 Annolic 801 801 250 250 250 250 Annolic 801 801 800 70 310 71 200	13 Ph	Pr ⁱ	244-246	06	208	18	800	264			-	575	71.3 5.9	9 6.9	70.9	6.4	6.9
Pr ⁿ 246-248 91 207 18 200 260 Bu ⁿ 276-277 90 207 18 500 259 PhNH2 011 ⁵ 90 207 18 500 240 Me PhNH2 011 ⁵ 90 208 28 000 240 Me PhNH2 86 ⁸ 93 206 23 900 249 Et PhNH2 90 ⁸ 94 207 24 800 250 Et PhNH2 98 ⁸ 92 207 25 100 250 Ataoolic Alaso Alaso Alaso Alaso Alaso Alaso Alaso	14 Ph	Et	243-245	06	207	18	700	260	14 200				70.2 6.1	L 7.0	69.8	5.8	7.4
Bu ⁿ 276-277 90 207 18 500 259 FNNH2 011 ⁵ 90 208 28 000 240 Me FNNH2 86 ⁸ 93 206 23 900 249 Et FNNH2 96 ⁸ 94 207 24 800 250 Et FNNH2 98 ⁸ 92 207 25 100 250 .thanolic solutions 2) CH2CH=CH2 3) Crude yield .thanolic solutions 6) Also ² max 290 nm (s 10 000) 7) Also	15 Ph	Prn	246-248	16	207	18	200	260	13 200	2 190			71.0 6.5	5 6.8	70.9	6.4	6.9
FhMH2 Oil ⁵ 90 208 240 Me PhNH2 86 ⁸ 93 206 23 900 249 Et PhNH2 86 ⁸ 94 207 24 800 250 Et PhNH2 98 ⁸ 94 207 24 800 250 Et PhNH2 98 ⁸ 92 207 25 100 250 hanolic solutions 2) CH ₂ CH=CH2 3) Crude yield tatography 6) Also Amax<290 nm (c	16 Ph	មួយ ព	276-277	90	207	18	500	259	12 600	2 190			71.8 6.9	9 6.3	71.9	6.9	6.5
Me FhNH ₂ 86 ⁸ 93 206 23 900 249 Et PhNH ₂ 90 ⁸ 94 207 24 800 250 Et PhNH ₂ 98 ⁸ 92 207 25 100 250 Et PhNH ₂ 98 ⁸ 92 207 25 100 250 Anolic solutions 2) CH ₂ CH=CH ₂ 3) Crude yield Atography 6) Also ^A max 290 nm (c 10 000) 7) Also	17 Ph	PhNH ₂	oi1 ⁵	06	208	28	000		13,300 ⁶	~		625	71.2 4.9	0.11.6	71.4	4.8	11.1
Et PhNH ₂ 90 ⁸ 94 207 24 800 250 Et PhNH ₂ 98 ⁸ 92 207 25 100 250 hanolic solutions 2) CH ₂ CH=CH ₂ 3) Crude yield atography 6) Also ^Å max 290 nm (c 10 000) 7) Also	18 Me Me	Phuh ₂		59	206		006		11 200 ⁹	2	10 1	605	65.9 6.2	2.12.6	66.1	6.4	12.8
Et PhNH ₂ 98 ⁸ 92 207 25 100 250 Anolic solutions 2) CH ₂ CH=CH ₂ 3) Crude yield Also ^Å max 290 nm (¢ 10 000) 7) Also	19 Me Et	PhNfi2	808	94	207		800	250	12 600 ¹¹	~	10 1	610	67.0 6.6	5 12.0	67.2	6.9	12.1
2) CH ₂ CH=CH ₂ 3) Crude yield so ^Å max 290 nm (c 10 000) 7) Also	20 Et Et	PhNH ₂		92	207	25	100		13 000 ¹²	2 210	10 1	610	68.1 7.4	11.3	68.3	7.3	11.4
	 Ethan chromato 	olic sc graphy	olutions 6) Also	2) CH	l ₂ CH=CH ₂ 90 nm (c	10 3	Cru	đe yield 7) Alsc	4) Ala vmax 34	10 peak 160, 33	50 cm	1610 - - 1 (1	ст ⁻¹ (Сн≖С NH ₂) 8)	3H ₂) 5) Melting	Purifi. Point	ed by	colum ecrys-

Allenes-41

11) Also ^A max 270 nm

tallized product. 9) Also ^Amax 270nm (¢ 9 800) 10) Also vmax 3460, 3360cm⁻¹ (NH₂)

(c 10 600) 12) Also $^{\lambda}$ max 270nm (c 11.000)

sulphides
2-cyanovinyl
IR data of
able 4. NM

ICN
۳ <u>۳</u>
a ⁷ −G
́т.

R ² SR ²	9.10(3H,t, С <u>Н</u> ₃ СН ₂), 8.90(3H,d, СН ₃ СН ₃ СС <u>Н</u> 3), 8.75(3H,t,С <u>Н₃</u> СН ₂ СН ₂), 8.70-8.00(4H,m,С <u>Н₂СН₂)</u> 7.50-7.20(2H,m,СН ₃ С <u>Н</u> 2СН), 7.00-6.30(1H,m,СН ₃ СН ₂ СН), 5.20(0.16H, s,=C<u>H</u>CN) , 4.70(0.84H,s , — СНСN)	9.10(6H,t,(CH ₃ CH ₂)2),9.00(3H,t,CH ₂)(H ₂),8.60-8.25(4H,m,(CH ₃ CH ₂)2),7.50-7.20(4H,m, CH ₂ CH ₂ CH ₃),7.15-7.00(2H,t,CH ₂ (CH ₂)2CH ₃ ,6.95-6.55(1H,m,(CH ₃ CH ₂)2CH),5.20(0.70H,s, =CH <u>C</u> N),4.70(0.3H,s,=CH <u>C</u> N)	9.03(3H,t,CH ₃ (CH ₂)3), 8.83-8.27(10H,m, CH ₃ (CH ₂) ₂ CH ₂ , SCH(CH ₃) ₂), 7.90-7.30(2H,m, CH ₃ (CH ₂) ₂ CH ₂) 6.67(1H,m, SC <u>H</u> (CH ₃) ₂), 5.12(0.75H,s,=CHCN), 4.67(0.25H,s,=CHCN),	8.75(6H,q. SCH(C <u>H₃)</u> 2), 7.33-6.63(1H,m. SC <u>H</u> (CH ₃) ₂), 4.75(0.5H,s,=C <u>H</u> CN), 4.52 (0.5H,s,=C <u>H</u> CN), 2.70-2.57(5H,m, aromatic).	8.78(3H,t, SCH ₂ CH ₃), 7.48-7.05(2H,m, SCH ₂ CH ₃), 4.88(0.33H,s,=CH _C N) 4.57(0.67H,s,=CH _C N), 2.72-2.57(5H,m, aromatic).	9.03(3H,t. S(CH ₂) ₂ CH ₃), 8.77-8.13(2H,m, SCH ₂ CH ₂ CH ₃), 7.50-7.15(2H,m, CH ₂ CH ₂ CH ₃), 4.87(0.33H,s,=CH ₂ CN), 4.57(0.67H,s,=CH ₂ CN) w.70-2.57(5H,m, aromatic).	9.05(3H,t, SCH ₂ (SCH ₂) ₂ CH ₃), 8.82-8.20(4H,m, SCH ₂ (CH ₂) ₂ CH ₃), 7.42-7.08(2H,m, SCH ₂ (CH ₂) ₂ CH ₃), 4.87(0.5H,s,=CHCN), 4.55(0.5H,s, =CHCN), 2.65-2.40(5H,m, aromatic).	5.93-5.53(2H,s, NH ₂ , disappears on deuteration), 4.53(1H,s,=CHCN), 3.67-2.40 (9H,m, arcmatic).	8.65(6H,d,(CH ₃) ₂ CH), 6.95-6.38(1H,m,(CH ₃) ₂ CH), 5.76 (2H,s,NH ₂ , disappears on deuteration), 5.60(1H,s,=CHCN), 3.43-3.15(2H,m,aromatic), 2.80-2.60(2H,m, aromatic).	9.00(6H,t,(C $\underline{H}_{3}CH_{2}$)_2CH), 8.52-8.05(4H,m,(C $H_{3}C\underline{H}_{2}$)_2CH), 7.42-6.85(1H,m,(C $H_{3}CH_{2}$)_2C <u>H</u>), 5.70(2H,s,N <u>H</u> _2, disappears on deuteration), 5.50(1H,s,=C <u>H</u> CN), 3.45-3.17(2H,m, aromatic), 2.92-2.60(2H,m, aromatic).
^в 3	Pr	Bu	Pri	Pr ¹	Et	Рг	Bu	PhNH ₂	2 HNH2	PhNH2
	Et	Б Т	н						Me	
R ¹ R ²			Bu ⁿ I	Ę	Ę	بد د	۲.	۲.		
æ	×		12. B					17. P	18. M	20. E

(0.5 g) were refluxed in ethanol (100 ml) for 1 h. Working up gave a solid which was recrystallised from hexane to give 3-(2-aminophenylthio)-4-methylhex-2-enenitrile (6.5 g, 94%), m.p. 90°. Data for this compound 19 and two similar compounds are summarised in Tables 3 and 4.

3-(2-Aminophenylthio-3-phenylprop-2-enenitrile. Freshly distilled phenylpropynenitrile² (2.54 g, 0.02 mol) was mixed with 2-aminothiophenol (2.5 g, 0.02 mol). A slighly exothermic reaction (the temperature reached 32°) took place to give a thick oil. Purification by column chromatography on alumina (grade H, activity 3) and elution with 40% chloroform-hexane gave 3(2-aminophenylthio)-3-phenylprop-2-enenitrile (4.8 g, 95%) v_{max} 3460, 3350 (NH₂) 2215 (C = N) and 1625 cm⁻¹ (C-C). The band for S-H at v_{max} 2520 cm⁻¹ had disappeared. Other data for this compound 17 are summarised in tables 3 and 4.

2-Phenyl-2-benzothiazole. 3-(2-Aminophenylthio)-3phenyl-prop-2-enenitrile (3 g, 0.012 mol) was heated at 200° for 20 minutes. Acetonitrile was given off. The residue in the flask was allowed to cool to room temperature, then recrystallised from benzene to give 2-phenyl-2-benzothiazole (2.1 g, 84%). Data for this compound (25) is given in Tables 6 and 7.

2-(1-Methylpropyl-2-benzothiazole. 3-(2-Aminophenylthio)-4-methylhex-2-enenitrile (4.64 g, 0.02 mol) was heated at 250°. Acetonitrile distilled off and was followed by crude product (7.2 g). This was dissolved in ether, washed with water and redistilled to give 2-(1-methylpropyl)-2-benzothiazole (6.8 g, 82%). Data for this compound 22 and three other similar compounds 21, 23 and 24 are given in Tables 6 and 7.

3-2-Aminoethanethio)-4-methylhex-2-enenitrile. 2-Aminoethanethiol hydrochloride (11.35 g, 0.1 mol) was dissolved in water (100 ml) and calcium carbonate added to the solution followed by a solution of 4-methylhexa-2, 3-dienenitrile (10.7 g, 0.1 mol) in ethanol (100 ml). Refluxing for 30 min. gave, on working up, slightly impure 3-(2-aminoethanethio)-4-methylhex-2-enenitrile in quantitative yield, the only contaminant being 3-(2aminoethanethio)-4-methylhex-3-enenitrile. This compound was used in the next experiment without further purification.

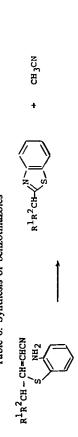

2-(1-Methylpropyl)-2-thiazoline. 3-(2-Aminoethanethio)-4-methylhex-2-enenitrile (12.2 g, 0.066 mol) was heated at 250° when acetonitrile, followed by crude product distilled off. The latter was dissolved in ether, washed with water and dried (MgSQ₄). Fractionation after removal of solvent gave 2-(1-methylpropyl)thiazoline (6.73 g, 71%), b.p. 189–190° at 760 mm Hg. Data for this compound **27** and three others are given in Tables 8 and 9.

Table 5. Chemical shift (τ) of the olefinic protons and ratio of the *E* and *Z* isomers of 2-cyanovinyl sulphides

	R ¹ R ² CH C S	= H +	$R^{1}R^{2}CH$ $C = C$ R^{3}	,H CN	
 R ¹	R ²	R ³	E	Z	Ratio of E:Z
Me	Et	Pr ⁿ	4.80	5.30	1:5
Et	Et	Bu ⁿ	4.80	5.30	3:7
Me (CH ₂)3	Pr ⁱ	4.67	5.12	1:3
Ph	· ,	Pr ⁱ	4.52	4.75	1:1
Ph		Et	4.57	4.88	2:1
Ph		Pr ⁿ	4.57	4.87	2:1
Ph		Bu ⁿ	4.55	4.87	1:1
Et	Et	Et*	4.62	5.02	1:2
Me	Et	Et*	4.67	5.18	2:3
Me	Et	Pr ^{i*}	4.62	5.15	2:3
Me	Et	Ph#	4.65	5.62	1:2

*These compounds also contained some unconjugated adduct.

nzothiazoles
ې م
thesis
Syr
é.
Table

	Nitr	ile	b.p.	Yield U.V.	<u>г.</u>	۲.					Found	U		nbəx	keguirea	
	R ¹	R ²	R ¹ R ² at 670mmHg (%) λ _{max} ε λ _{max} ε ^λ max ε	(8)	у Мах	u), тах	ω), max	ų	υ	Н	N	υ	н	z
21.	Me	Me	21. Me Me 260-262 ⁰	82ª	217	217 21900 250 8200 285 2500 67.7 6.1 7.7 67.8 6.2 7.9	250	8200	285	2500	67.7	6.1	7.7	67.8	6.2	7.9
22.	Me	Et	22. Me Et 285-286 ⁰	82 ^b	218	22800 249 9100 285 2700 69.0 6.9 7.1 69.1 6.8 7.3	249	9100	285	2700	69.0	6.9	7.1	69.1	6.8	7.3
23.	23. Me Pr	ΡĽ	290-291 ⁰	80	220	23100 250 9500 285	250	9500	285	3000	70.2	7.0	7.0	3000 70.2 7.0 7.0 70.2 7.3 6.8	7.3	6.8
24.	Et	Et Et	289-291 ⁰	86	220	23600	250	250 9300 285	285	2900	70.2	7.1	6.5	2900 70.2 7.1 6.5 70.2 7.3 6.8	7.3	6.8
25.	25. Ph	_	112 ^{0*}	82 ^C	226	226 19300 230 18800 300 18800 73.9 4.4 6.6 73.9 4.3 6.6	230	18800	300	18800	73.9	4.4	6.6	73.9	4.3	6.6

(c) m/e 211. (b) m/e 191; *Melting point, (a) m/e 177;

$\frac{R^{1}}{R^{2}} > CH \langle S \rangle$		Me Me 8.52 (6H, d, (C <u>H₃)</u> 2CH), 6.59-6.48(1H,m, (CH ₃) ₂ C <u>H</u>), 2.74-2.44 (2H,m, aromatic), 2.22-1.92 (2H,m,aromatic)	9.00 (3H,t,CH ₃ CH ₂ CCH ₃), 8.55 (3H,d,C <u>H</u> 3CHCH ₃ CH ₂), 8.40-7.70 (2H,m,CH ₃ CH ₂ CCH ₃), 7.17-6.58 (1H,m,CH ₃ CH ₂ CH ₂ OH ₂), 2.93-2.40 (2H,m,aromatic), 2.37-1.90 (2H,m,aromatic)	9.05 (3H,t,CH ₃ (CH ₂)2CCH), 8.65 (3H,d,CH ₃ (CH ₂)2CCH ₃), 6.70-6.35 (1H,m,CH ₃ (CH ₂)2CHCH ₃) 2.80-2.52 (2H,m,aromatic), 2.48-1.98(2H,m,aromatic)	9.05 (6H,t,(C <u>H</u> ₃ CH ₂) ₂ CH), 8.50-7.78 (4H,m,(CH ₃ (C <u>H</u> ₂) ₂ CH), 7.24-6.72(1H,m,(CH ₃ CH ₂) ₂ C <u>H</u>) 2.90-2.55 (2H,m,aromatic), 2.33-1.87 (2H,m,aromatic).
	R2	Me	Me Et	Pr	Et
	R ¹	Åe	Ме	Me	ы t
		21.	22.	23.	24.

2.87-2.33 (5H,m, aromatic), 2.25-1.77 (4H,m, aromatic).

Ъh

25.

Table 8. Synthesis of thiazolines

			b.p. at				v.		FC	UND		RE	QUIRE	D
	R ^I	R ²	760mmHg	(%)	^λ max	ε	λmax	ε	С	н	N	с	H	N
26.	Me	Me	180-182	67	202	3 800	2 30	2 200	56.0	8.7	10.7	55.8	8.5	10.9
27.	Me	Et	189-190	71*	202	4 200	232	2 300	58.5	9.3	9.5	58.7	9.1	9.
28.	Et	Et	218-220	73	202	4 100	232	2 400	61.1	9.5	8.6	61.2	9.6	8.
29.	Ме	Pr	220-243	70	202	4 000	232	2 200	61.0	9.3	8.8	61.2	9.6	8.

*m/e 143

Table 9. NMR data of thiazolines

 $\frac{R^1}{R^2} > CH - N$ r² R¹ 8.85(3H,d, $(C\underline{H}_3)_2CH$), 7.45-6.95(1H,m, $(CH_3)_2C\underline{H}$), 6.85(2H,t, $CH_2C\underline{H}_2N$), 5.85(2H,t, $SC\underline{H}_2CH_2$) 26. Me Me 27. Me Et 9.12(3H,t, CH₃,t, CH₃CH₂CHCH₃), 8.87(3H,d,C₂H₅CHCH₃), 8.60-8.25(2H,m, CH₃CH₂CHCH₃) 7.60-7.15(1H,m,CH₂CH₂CH₂CH₂), 6.82(2H,t,CH₂CH₂N), 5.85(2H,t,SCH₂CH₂) 28. Et Et 9.12(3H,t, (CH₃CH₂)₂CH), 8.85-8.05(4H,m, (CH₃CH₂)₂CH), 7.85-7.25(1H,m, (CH₃CH₂)₂CH), 4.82(2H,t, CH₂CH₂N), 5.85(2H,t,SCH₂CH₂)

REFERENCES

Part 40. S. R. Landor, P. D. Landor, Z. T. Fomum, J. T. Mbafor and A. E. Nkengfack, J. Chem. Soc. Perkin Trans. I, 1223 (1983).

²Z. T. Fomum, P. M. Greaves, P. D. Landor and S. R. Landor, Ibid. Perkin Trans. I, 1108 (1973).

³C. W. N. Cumper, Z. T. Fomum, P. M. Greaves and S. R. Landor, *Ibid.* Perkin Trans. I, 885 (1973). ⁴J. E. Baldwin, *Ibid.* Chem. Commun. 734 (1976).

- ⁵For preliminary publication of some of this work see Z. T. Fomum, P. D. Landor, S. R. Landor and G. B. Mpango, Tetrahedron Letters. 1101 (1975).